Nomenclature of Cycloalkanes

	Draw skeletal structures for	Chapter 4 in McMurry; Chapter 4 in Vollhardt	
cyclopropane	cyclobutane	cyclopentane	$\underline{\text { cyclohexane }}$

- When there are substituents that are simple, name the ring as the Parent part:

Methylcyclopentan
1-Cyclopropylbutane

- When there are two or more substituents, choose one attachment as carbon 1 so that the second substituent has a lower number

NOT

Name:

Nomenclature of Cycloalkanes

NOT
+

1-Ethyl-2,6-dimethylcycloheptane
Higher

3-Ethyl-1,4-dimethylcycloheptane

- Halogens are treated like alkyl groups

1-Methylpropyllcyclobutane
or sec-butylcyclobutane

Stereoisomerism

Constitutional isomers
(different connections
between atoms)

Stereoisomers
(same connections
but different three-
dimensional geometry)

cis-1,2-dimethylcyclopropane trans-1,2-dimethylcyclopropane
Configurational isomers are stereoisomers that cannot be interconverted by rotation around a single bond (cf. conformational isomers).
(Interconversion between configurational isomers usually involves breaking a bond. Thus, configurational isomers are usually not readily interconverted at rt and can, in principle at least, be separated.)

r-1,t-2,c-4-trichlorocyclohexane

t-6-ethyl-1,r-3,t-4-trimethylcyclohexene

r-1-bromo-1-chloro-t-3-ethyl-3-

Structures of Cycloalkanes

The C-C-C bond angle of cyclopropane: 60°. The deviation of the bond angle from the ideal value raises a molecule's internal energy because of angle strain Just as there was a potential energy surface associated with bond rotation, there is also one associated with bond angle deformation.

Heat of Combustion and Strain Energy of Cycloalkanes

Conformations of the Cycloalkanes

$$
\begin{aligned}
& \text { Cyclopropane is planar but the other alkanes adopt } \\
& \text { non-planar conformations to minimize: }
\end{aligned}
$$

- Angle strain - expansion or compression of bond angles away from most stable state
- Torsion strain - eclipsing of bonds on neighboring atoms
- Steric strain - repulsive interactions between nonbonded atoms in close proximity

Ring strain energy calculated by

 cycloalkane heat of combustion per CH_{2} unit, subtracted by acyclic alkane heat of combustion per CH_{2}, and multiplying by the number of CH_{2} units in a ring.

2-5

Conformations of the Cycloalkanes

Conformations of the Cycloalkanes

Draw a Chair Conformation of Cyclohexnane

Step 1 Draw two parallel lines, slanted downward slightly off-set from each other;

Step 2 Draw another two parallel lines from two carbons far away from each other;

Step 3 Connect the rest two bonds (also parallel with each other).

Cyclohexane Substituents

Draw the axial and equatorial bonds at each carbon

Cyclohexane can undergo a conformational transition known as the ring-inversion (ring-flip) in which each axial bond becomes equatorial and each equatorial bond becomes axial

Ring Inversion (Flipping) of Cyclohexane

Atomic Motions Involved in Ring Inversion

Substituted Cyclohexanes
Substituents prefer equatorial positions to avoid unfavorable 1,3-diaxial interactions (a type of steric strain).

2-13

Disubstituted Cyclohexanes

Polycyclic Alkanes and Spiroalkanes

Give IUPAC names

decalin decahydronaphthalene

norbornane

C1 and C4 are bridgehead carbons

Cubane

adamantane

trans-Decalin

cis-Decalin

