Nomenclature of Cycloalkanes

Draw skeletal structures for

Chapter 4 in McMurry; Chapter 4 in Vollhardt

<u>cyclo</u>propane

cyclobutane

cyclopentane

<u>cvclo</u>hexane

• When there are substituents that are simple, name the ring as the Parent part:

Methylcyclopentane

1-Cyclopropylbutane

• When there are two or more substituents, choose one attachment as carbon 1 so that the second substituent has a lower number:

Name: 2-1

Nomenclature of Cycloalkanes

• Halogens are treated like alkyl groups

2-2

Stereoisomerism

Constitutional isomers (different connections

between atoms)

Stereoisomers

(same connections

but different threedimensional geometry)

and

Draw a constitutional isomer of it.

CH3-CH2-CH2-CH3

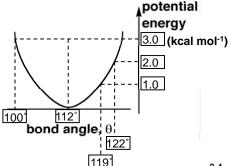
cis-1,2-dimethylcyclopropane trans-1,2-dimethylcyclopropane

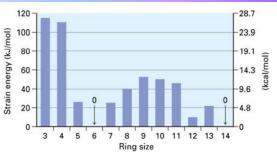
Configurational isomers are stereoisomers that cannot be interconverted by rotation around a single bond (cf. conformational isomers).

(Interconversion between configurational isomers usually involves breaking a bond. Thus, configurational isomers are usually not readily interconverted at rt and can, in principle at least, be separated.)

r-1-bromo-1-chloro-t-3-ethvl-3t-6-ethyl-1,r-3,t-4-trimethylcyclohexene methylcyclopentane

Structures of Cycloalkanes





The ideal bond angle of an sp^3 carbon: 109.5°

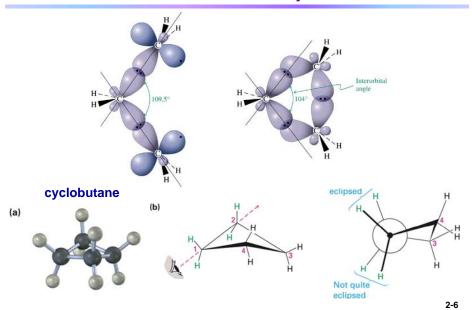
The C-C-C bond angle of cyclopropane: 60°. The deviation of the bond angle from the ideal value raises a molecule's internal energy because of angle strain. Just as there was a potential energy surface associated with bond rotation. there is also one associated with bond angle deformation.

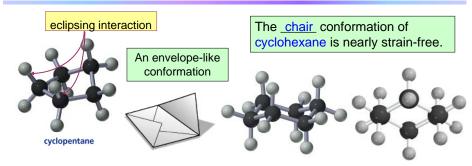
Heat of Combustion and Strain Energy of Cycloalkanes

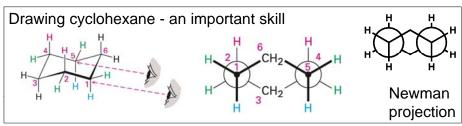
Ring strain energy calculated by cycloalkane heat of combustion per CH_2 unit, subtracted by acyclic alkane heat of combustion per CH_2 , and multiplying by the number of CH_2 units in a ring.

Conformations of the Cycloalkanes

Cyclopropane is planar but the other alkanes adopt non-planar conformations to minimize:

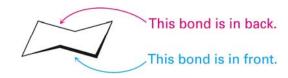

- <u>Angle strain</u> expansion or compression of bond angles away from most stable state
- Torsion strain eclipsing of bonds on neighboring atoms
- <u>Steric strain</u> repulsive interactions between nonbonded atoms in close proximity


Eclipsed


2-5

Conformations of the Cycloalkanes

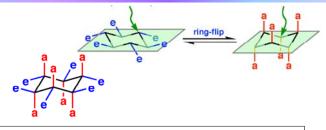
Conformations of the Cycloalkanes

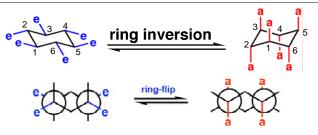


Draw a Chair Conformation of Cyclohexnane

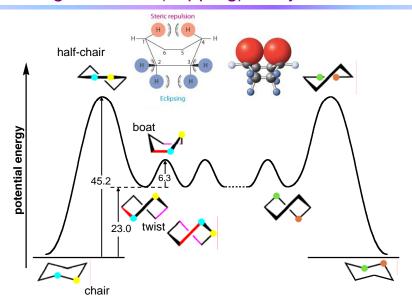
Step 1 Draw two parallel lines, slanted downward slightly off-set from each other;

Step 2 Draw another two parallel lines from two carbons far away from each other;


Step 3 Connect the rest two bonds (also parallel with each other).

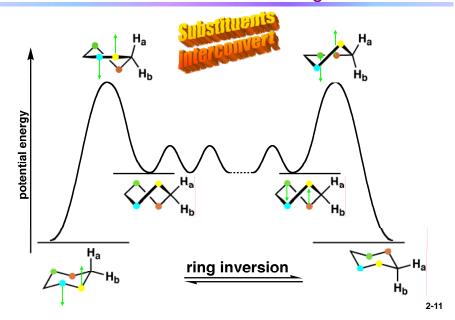

Cyclohexane Substituents

Draw the axial and equatorial bonds at each carbon

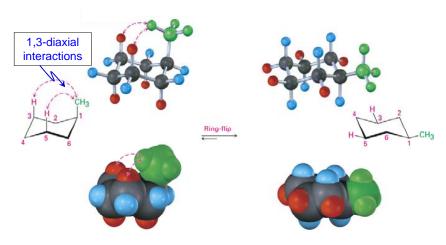


2-9

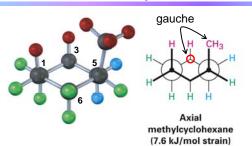
Cyclohexane can undergo a conformational transition known as the <u>ring-inversion (ring-flip)</u> in which each axial bond becomes equatorial and each equatorial bond becomes axial



Ring Inversion (Flipping) of Cyclohexane


2-10

Atomic Motions Involved in Ring Inversion


Substituted Cyclohexanes

Substituents prefer <u>equatorial</u> positions to avoid unfavorable <u>1,3-diaxial interactions</u> (a type of <u>steric</u> strain).

2-12

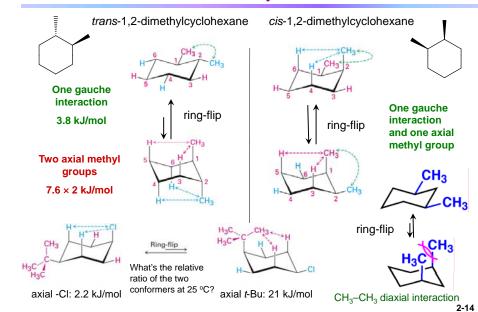
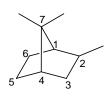

Substituted Cyclohexanes

TABLE 4-3	Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent Equatorial to the Conformer with the Substituent Axial				
Substituent	G [kcal mol	1 (kJ mol 1)]	Substituent	G [kcal mol	1 (kJ mol 1)]
Н	0	(0)	F	0.25	(1.05)
CH ₃	1.70	(7.11)	CI	0.52	(2.18)
CH₃CH₂	1.75	(7.32)	Br	0.55	(2.30)
(CH ₃) ₂ CH	2.20	(9.20)	I	0.46	(1.92)
(CH ₃) ₃ C	5	(21)	HO	0.94	(3.93)
но—с О	1.41	(5.90)	CH ₂ O	0.75	(3.14)
CH ₃ O-C	1.29	(5.40)	H ₂ N	1.4	(5.9)
Note: In all example	s, the more stable confor	mer is the one in which	h the substituent is equatorial.		

2-13

Disubstituted Cyclohexanes

Cis- and Trans-Decalins

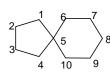

8 Ring-flip

Polycyclic Alkanes and Spiroalkanes

Give IUPAC names

decalin decahydronaphthalene

norbornane


C1 and C4 are bridgehead carbons

Cubane

adamantane

cis-Decalin

trans-Decalin