Reactions of Alkanes: Radical Halogenations

Sections 5.3, 5.8, 5.9, 10.3 in McMurry; Chapter 3 in Vollhardt

homolytic cleavage or bond homolysis:

heterolytic cleavage:

 $A \stackrel{\frown}{-} B \longrightarrow A^+ + :B$

Fish-hook (or single-headed) arrows indicate <u>single-electron</u> transfer; double-headed arrows are for <u>electron-pair</u> transfer.

bond-dissociation energy or bond strength:

 $H \bullet + \bullet H$ $\Delta H^{\circ} = 435 \text{ kJ mol}^{-1}$

Relative stability radicals:

vinylic < methyl < primary < secondary < tertiary < allylic < benzylic

vinylic radical

Allylic and benzylic radicals

Allyl and benzyl groups

3-1

Classification and Stability of Radicals

Structures of Alkyl Radicals and Hyperconjugation

Energy Diagram of a Reaction

By tracking the energy changes along each step of a reaction pathway, it is possible to determine:

- how much
- how fast

product is formed. A <u>reaction coordinate diagram</u> describes the energy changes that take place in each step of the mechanism.

This diagram represents one step in a reaction mechanism

Indicate:

- (a) Reactants
- (b) Transition state
- (c) Products
- (δ) ΔG° free energy change
- (e) ΔG[≠] free energy of activation

Chlorination of Methane: the Radical Chain Mechanism

$$CH_4 + Cl_2 \xrightarrow{hv \text{ or } \Delta} CH_3CI + HCI$$

During the reaction, the first product formed is $\mathrm{CH_3CI}$ (and HCI). If sufficient chlorine is present, further substitution may occur, forming $\mathrm{CH_2CI_2}$, $\mathrm{CHCI_3}$, and finally $\mathrm{CCI_4}$.

A mechanism is a detailed, step-by-step description of all of the changes in bonding that occur in a reaction.

Initiation:

$$Cl \xrightarrow{Cl} Cl \xrightarrow{hv \text{ or } \Delta} 2 Cl$$

Propagation:

These two reactions happen repeatedly: chain reaction

Chain termination:

Propagation Step 1: Potential Energy Diagram

Propagation Step 1: Potential Energy Diagram

Propagation Step 2

3-7

Energetics of Methane Halogenations

TABLE 3-5 Enthalpies of the Propagation Steps in the Halogenation of Methane [kcal mol '(k] mol ')]				
Reaction	F	CI	Br	I
$X \cdot CH_4 \longrightarrow \cdot CH_3 HX$	-31 (-130)	+2(+8)	+18 (+75)	+ 34 (+ 142)
$\begin{array}{ccc} \cdot \text{CH}_3 & \text{X}_2 & \longrightarrow & \text{CH}_3 \text{X} & \text{X} \cdot \end{array}$	-72 (-301)	-27 (-113)	- 24 (- 100)	- 21 (- 88)
$CH_4 X_2 \longrightarrow CH_3 X HX$	-103 (-431)	- 25 (- 105)	- 6 (- 25)	+13 (+54)

3-9

3-11

On the Energy of the TS[≠]

In the TS[#], bonds are being made and bonds are being broken. How far along is bond forming and bond breaking at the time the TS[#] is crossed?

The Hammond Postulate - The structure of the TS[≠] will more closely resemble the species it is more similar to in energy.

3-10

Chlorination of Propane: Relative Reactivity

$$Cl_2 + CH_3CH_2CH_3 \xrightarrow{hv} CH_3CH_2CH_2CI + CH_3CHCH_3 + HCI$$

1-Chloropropane

Statistical ratio: 3 : 1

Experimental ratio (25 °C): 43 : 57

Relative reactivity:
$$\frac{2^{\circ} H}{1^{\circ} H} = \frac{\text{product \% from 2 }^{\circ} H \text{ abstraction /}_{number \text{ of 2 }^{\circ} Hs}}{\text{product \% from 1 }^{\circ} H \text{ abstraction /}_{number \text{ of 1 }^{\circ} Hs}}$$
$$= ---- \approx ?$$

Chlorination of Propane: Relative Reactivity

The more stable the product, the lower the activation energy.

Relative Reactivity Calculation

Relative reactivity:
$$\frac{3^{\circ} \text{ H}}{1^{\circ} \text{ H}} = \frac{\text{product \% from 3 } \circ \text{H abstraction/number of 3 } \circ \text{Hs}}{\text{product \% from 1 } \circ \text{H abstraction/number of 1 } \circ \text{Hs}}$$

$$= ---- \approx ?$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

Selectivity in Radical Halogenation

$$F_2 + (CH_3)_3CH \xrightarrow{h\nu} (CH_3)_3CF + FCH_2 \xrightarrow{C} C - H + HF$$

$$14\% \\ 2\text{-Fluoro-2-methylpropane} \\ \text{(Isobutyl fluoride)} \\ \text{1-Fluoro-2-methylpropane} \\ \text{(Isobutyl fluoride)} \\ \text{(Isobutyl fluoride)}$$

Calculate the relative selectivity by yourself.

Bromination of 2-Methylpropane

Selectivity in Radical Halogenation

Relative Reactivity of Various Carbon Centers in Halogenations

TABLE 3-6	BLE 3-5 Relative Reactivities of the Four Types of Alkane CÖH Bonds in Halogenations				
C-H bond	F· (25 C, gas)	Cl· (25 C, gas)	Br · (150 C, gas)		
СН3-Н	0.5	0.004	0.002		
RCH ₂ -H ^a	1	1	1		
R ₂ CH-H	1.2	4	80		
R ₃ C-H	1.4	5	1700		
^a For each halogen of the primary C-	, reactivities with four types of H bond.	alkane C-H bonds are norma	alized to the reactivity		

3-13