Benzene and Aromaticity

Aromaticity and Hückel 4*n*+2 Rule

Benzene is unusually stable

- aromatic
- All carbon–carbon bond lengths of 139 pm
- Resonance hybrid with structure between two Kekulé structures
- Undergoes substitution rather than electrophilic addition

Hückel's rule: a planar cyclic molecule with alternating double and single bonds has aromatic stability if it has $4n+2\pi$ electrons (n is 0,1,2,3,4)

Molecular Orbital of Benzene

Other Aromatic Ions

Why 4*n* + 2? ψ4^{*}____ Five p atomic ŧ orbitals 1 <u></u>+</u> ↓ ÷ 1 ŧ ŧ What about the MOs for Five cyclopentadienyl Cyclopentadienyl Cyclopentadienyl Cyclopentadienyl cycloheptatrienyl cation, molecular orbitals cation radical anion anion and radical? (five π elect (six π electrons) four π elec **Polycyclic Aromatic Compounds** 1.42 Å Naphthalene Anthracene Tetracene Phenanthrene (Naphthacene) 39 Å 15-6 Benzolalpyrene Coronen

Naming Benzene Derivatives

Spectroscopic Characteristics of Aromatic Compounds

• Aromatic ring C–H stretching at ca. 3030 cm⁻¹;

IR

Peaks at 1450 to 1600 cm⁻¹ (complex molecular motion of the ring);
Strong absorption from C-H out of plane bending at 690 to 900 cm⁻¹.

monosubstited:	690-710 cm ⁻¹	<i>m</i> -disubstituted:	690-710 cm ⁻¹
	730-770 cm ⁻¹		750-850 cm ⁻¹
o-disubstituted:	735-770 cm ⁻¹	<i>p</i> -disubstituted:	790-840 cm ⁻¹

NMR Characteristics of Aromatic Compounds

Reactions of Benzene: Electrophilic Aromatic Substitution

Energetics of Electrophilic Aromatic Substitutions

Halogenation of Benzene

Aromatic Nitration and Sulfonation

Friedel-Crafts Alkylation

Limitations of Friedel-Crafts Alkylation

Substituent Effects on the Electrophilic Aromatic Substitutions

Inductive and Resonance Effects

Electrophilic Attack on Disubstituted Benzenes

- > When the effects of the directing groups reinforces each other, the situation is straightforward.
- > When the effects of the directing groups oppose each other, the more powerful activating group will dominate.
- > Mixtures of products often results when the directing groups are similar in their directing strength. OH dire

CH₂O

> Further substitution rarely occurs between two groups in a metadisubstituted compound due to steric hindrance.

CH

C(CH₄)

the methyl and nitro substituents

direct the incoming substituent to

+ HNO1

H₂SO₄

NO

2,4-dinitrotoluene

Ш

OCH₁

15-27

the indicated positions

CH

NO

p-nitrotoluer

Synthetic Strategies toward Substituted Benzenes

- 1. Chemical interconversions of *ortho*, *para* with *meta* directors (nitro \Leftrightarrow amino or carbonyl \Leftrightarrow methylene);
- 2. Employment of reversible blocking strategies with sulfonic acid groups (-SO₃H);
- 3. Additional knowledge about practicality of certain electrophilic substitutions.

Synthetic Strategies toward Substituted Benzenes

Reactivity of Polycyclic Benzenoid Hydrocarbons

Reactivity of Polycyclic Benzenoid Hydrocarbons

Benzene as an Electrophile: **Nucleophilic Aromatic Substitution**

This reaction goes by an addition/elimination mechanism

