Naming Alcohols

A primary (1°) alcohol A secondary (2°) alcohol A tertiary (3°) alcohol

alcohols with common names:

IUPAC names?

Glycerol

13-1

Systematic Nomenclature of Alcohols

Simple alcohols are named by the IUPAC system as derivative of alkanes:

- Select the longest carbon chain containing the hydroxyl group, and replace the -e ending with -ol.
- Number the parent chain beginning at the end nearer the -OH group.
- Number the substituents according to their position on the chain, and write the name listing the substituents in alphabetic order and identifying the position of the -OH.

Properties of Alcohols

Short-chain alcohols are miscible with water, also due to H-bonds; alcohols bearing longer alkyl chains become less soluble in water.

Compound	IUPAC name	Common name	Melting point (°C)	Boiling point (°C)	Solubility in H ₂ O at 23°C
СН3ОН	Methanol	Methyl alcohol	-97.8	65.0	Infinite
CH ₃ Cl	Chloromethane	Methyl chloride	-97.7	-24.2	0.74 g/100 mL
CH ₄	Methane		-182.5	-161.7	3.5 mL (gas)/100 mL
СН,СН,ОН	Ethanol	Ethyl alcohol	-114.7	78.5	Infinite
CH,CH,Cl	Chloroethane	Ethyl chloride	-136.4	12.3	0.447 g/100 mL
CH ₃ CH ₃	Ethane		-183.3	-88.6	4.7 mL (gas)/100 mL
					13-3

Alcohols as Acids and Bases

13-4

Solvation and Inductive Effect on the **Acidity of Alcohols**

less hindered: more easily solvated

Methoxide ion, CH₃O⁻ $(pK_a = 15.54)$

more hindered: less easily solvated

tert-Butoxide ion, (CH₃)₃CO⁻ $(pK_a = 18.00)$

versus

pKa = 5.4pKa = 18.0

Compound	p <i>K</i> a	
(CH ₃) ₃ COH	18.00	
CH ₃ CH ₂ OH	16.00	
H ₂ O	15.74	
CH ₃ OH	15.54	
CF ₃ CH ₂ OH	12.43	

The acidity of an alcohol (relative pKa in solution):

Strongest acid

Weakest acid

CH₃OH < primary < secondary < tertiary

13-5

Preparation of Alcohols: a Review

Preparation of Alcohols from Alkenes: a Review

Oxidation with OsO₄:

- syn-addition;
- · cis-diol product

Epoxidation/ring-opening:

anti-addition

Alcohols from Reduction of Carbonyl Compounds

hexanedioi)

Reduction of Aldehydes and Ketones with LiAlH₄

LiAlH₄ even reduces carboxylic acids and esters into alcohols

2-Cyclohexenone

Reaction of Lithium Aluminum Hydride with Protic Solvents

$$LiAlH_4 + 4CH_3OH \xrightarrow{Fast} LiAl(OCH_3)_4 + 4H-H\uparrow$$

Carboxylic acid reduction

13-9

1-Hexanol (62%)

13-11

$$CH_3(CH_2)_7CH = CH(CH_2)_7CH_2OH$$

9-Octadecenoic acid (oleic acid)

Ester reduction

CH₃CH₂CH=CHCOCH₃
$$\xrightarrow{1. \text{LiAlH}_4, \text{ ether}}$$
 CH₃CH₂CH=CHCH₂OH + CH₃OH

Methyl 2-pentenoate 2-Penten-1-ol (91%)

Reaction of Grignard Reagents with **Carbonyl Compounds**

Reactions of Grignard Reagents with Carbonyl Compounds and Epoxides

Ester reaction

Butylmagnesium bromide

oxide

Reactions of Alcohols: with Bases and Alkali Metals

with base

with alkali metals

ROH + M (Li, Na, K, Cs)
$$\longrightarrow$$
 RO $^{-}$ M $^{+}$ + H₂

Relative Reactivity of ROH with Alkali Metals $R = CH_3 > 1^\circ > 2^\circ > 3^\circ$ alkyl groups

Alkoxides (RO) are useful nucleophiles or bases in nucleophilic substitution and elimination reactions.

Oxidation of Alcohols

Oxidation of Alcohols

Substitution and Elimination Reactions of Alcohols

In this section we apply what we've learned - to reason by analogy - so that we can predict the outcome of new reactions (e.g., predictions of leaving group ability)

Breaking C-O bonds

–OH is a poor leaving group and does NOT directly participate in S_N1 , S_N2 , E1 or E2 reactions.

Why is –OH a poor leaving group?

_ L¨G [⊝] _	Conjugate <u>Acid</u>	pK _a of <u>Conjugate Acid</u>	
: <u>Ï</u> .	HI	-10.0	
:Br:	HBr	-9.0	
HÖ∷	нон	15.7	13-15

Protonation of an Alcohol Improves the Leaving Ability

Examples - Nucleophilic Substitution

$$CH_3CH_2CH_2OH + HI \xrightarrow{\Delta} CH_3CH_2CH_2I + H_2O$$
 S_N2

a primary alcohol

$$(CH_3)_3COH + HBr \longrightarrow (CH_3)_3CBr + H_2O S_N1$$

a tertiary alcohol

stable carbocation facilitates S_N1 reaction

Secondary alcohols show complex behavior when treated with HX, following $S_N 2$, $S_N 1$, and E1 pathways.

$$\begin{array}{c|c} OH & Br \\ \hline & + & HBr & \xrightarrow{\Delta} & + & H_2O \end{array}$$
 a secondary alcohol

Dehydration of Alcohols into Alkenes - Elimination

Carbocation Rearrangement

Hydride Shift

$$\begin{array}{c} \textbf{H}_{3}\textbf{C} & \textbf{CH}_{3} \\ \textbf{CH}_{3}\textbf{C} & \textbf{CH}_{3} \\ \textbf{CH}_{3}\textbf{C} & \textbf{CH}_{3} \\ \textbf{H}_{3}\textbf{C} & \textbf{H} & \textbf{H}_{4} \\ \textbf{H}_{5} & \textbf{H} & \textbf{H}_{5} \\ \textbf{H}_{5} & \textbf{H} & \textbf{H}_{5} \\ \textbf{H}_{5} & \textbf{H}_{5} & \textbf{H}_{5} \\ \textbf{H}_{5} \\ \textbf{H}_{5} & \textbf{H}_{5} \\ \textbf{H}_{5} \\ \textbf{H}_{5} & \textbf{H}_{5} \\ \textbf{H}_{$$

Neighboring-Group Effect

13-19

13-17

Pinacol Rearrangement and Intermolecular vs. Intramolecular Dehydrations

Suggest a mechanism:

HO

H₃C

CC

CH₃

Pinacol

Pinacolone

$$CH_3CH_2OCH_2CH_3 \xrightarrow{H_2SO_4} CH_3CH_2OH \xrightarrow{H_2SO_4(98\%)} CH_2 = CH_2 + H_2O$$

substitution (intermolecular)

Write out the mechanism for this reaction.

 $(CH_3)_3COC(CH_3)_3$ \leftarrow $(CH_3)_3COH \xrightarrow{H_2SO_4} (CH_3)_2C=CH_2 + H_2O$

13-21

Activate Alcohols with PBr₃

13-22

Activated Alcohols Based on SOCI₂

Activated Alcohols Based on Sulfonate Esters

13-23

Stereochemistry of Activated Alcohols

Protection and Deprotection of Alcohols

Example of Protection and Deprotection

Spectroscopies of Alcohols

